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This Talk Is Not About 2050…

Quantum computing DNA computing

Optical computing Other far-out technologies
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This Talk: HPC and Supercomputing in 2018

Where are we today? How did we end up here?

Where will we go? How will it impact you?
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What Is High Performance Computing?
1 flop/s = one floating-point operation (addition or multiplication) per second
mega (M) = 106, giga (G) = 109, tera (T) = 1012, peta (P) = 1015, exa E) = 1018

#1 supercomputer
224,162 CPUs
2.3 Pflop/s
$100,000,000
7 MW power

Computing systems in 2010

HPC
200 CPUs
20 Tflop/s
$700,000
8 kW power

Workstation
8 CPUs
1 Tflop/s
$10,000
1 kW power

Laptop
2 CPUs
20 Gflop/s
$1,200
30 W power

Cell phone
1 CPUs
1 Gflop/s
$300
1 W power

Economical HPC

Power grid scenario
 Central servers (planning, contingency analysis)
 Autonomous controllers (smart grids)
 Operator workstations (decision support)
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How Big are the Computational Problems?
1 flop/s = one floating-point operation (addition or multiplication) per second
mega (M) = 106, giga (G) = 109, tera (T) = 1012, peta (P) = 1015, exa E) = 1018

#1 supercomputer
2.3 Pflop/s
1M  1M
8 TB, 1,000s

Workstation
1 Tflop/s
16k  16k
2 GB, 8s

Laptop
20 Gflop/s
8k  8k
0.5 GB, 5.5s

Cell phone
1 Gflop/s
1k  1k
8MB, 2s

HPC
20 Tflop/s
64k  64k
32 GB, 28s

= 

Matrix-matrix multiplication…

for i=1:n

for j=1:n

for k=1:n

C[i,j] = 

A[i,k]*B[k,j]

..running on…
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The Evolution of Performance



Carnegie MellonCarnegie Mellon

How Do We Compare?
1 flop/s = one floating-point operation (addition or multiplication) per second
mega (M) = 106, giga (G) = 109, tera (T) = 1012, peta (P) = 1015, exa E) = 1018

#1 supercomputer
2.3 Pflop/s

In 2010…

HPC
20 Tflop/s

Workstation
1 Tflop/s

Laptop
20 Gflop/s

Cell phone
1 Gflop/s

…would have been the #1 supercomputer back in…

Cray X-MP/48
941 Mflop/s
1984

NEC SX-3/44R
23.2 Gflop/s
1990

Intel ASCI Red
1.338 Tflop/s
1997

Earth Simulator
35.86 Tflop/s
2002
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How do we get here?

If History Predicted the Future…
…the performance of the #1 supercomputer of 2010…

HPC
1 Pflop/s
2018

Workstation
1 Pflop/s
2023

Laptop
1 Pflop/s
2030

Cell phone
1 Pflop/s
2036

#1 supercomputer
1 Pflop/s

…could be available as
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HPC: ExtremeScale Computing
DARPA UHPC ExtremeScale system goals

 Time-frame: 2018

 1 Pflop/s, air-cooled, single 19-inch cabinet

 Power budget: 57 kW, including cooling

 50 Gflop/W for HPL benchmark 
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Developing The New #1: DoE ExaScale
Challenges to achieve ExaScale
 Energy and power
 Memory and storage
 Concurrency and locality
 Resiliency

X-Stack: Software for ExaScale
 System software
 Fault management
 Programming environments
 Applications frameworks
 Workflow systems

#1 supercomputer
2 Pflop/s
2010

#1 supercomputer
1 Eflop/s
2018
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Some Predictions for ExaScale Machines
Processors
 10 billion-way concurrency
 100’s of cores per die
 10 to 10-way per-core concurrency
 100 million to 1 billion cores at 1 to 2 GHz
 Multi-threaded fine grain concurrency
 10,000s of cycles system-wide latency

Memory
 Global address space without cache coherence
 Explicitly managed high speed buffer caches
 128 PB capacity
 Deep memory hierarchies

Technology
 22 to 11 nanometers CMOS
 3-D packaging of dies
 Optical communications at 1TB/s
 Fault tolerance
 Active power management 
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International Semiconductor Roadmap
Near-term (through 2016) and long-term (2017 through 2024)
 Process Integration, Devices, and Structures 
 RF and Analog / Mixed-signal Technologies for Wireless Communications 
 Emerging Research Devices 
 System Drivers 
 Design 
 Test and Test Equipment 
 Front End Processes 
 Lithography 
 Interconnect 
 Factory Integration 
 Assembly and Packaging 



Carnegie MellonCarnegie Mellon

Prediction 1: Network of Nodes
Why?
 State-of-the-art for large machines
 Allows scaling from Tflop/s to Eflop/s
 Designs can be tailored to application
 Fault tolerance

Implications
 Segmented address space
 Multiple instructions, multiple data (MIMD)
 Packet-based messaging
 Long inter-node latencies
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Prediction 2: Multicore CPUs
Why?
 State-of-the-art CPU design
 Growing transistor count (Moore’s law)
 Limited power budget

Implications
 On-chip multithreading
 Instruction set extensions targeting applications
 Physically segmented cache
 Software and/or hardware managed cache
 Non-uniform memory access (NUMA)

IBM Cell BE
8+1 cores

Intel Core i7
8 cores, 2-way SMT

IBM POWER7
8 cores, 4-way SMT

Intel SCC
48 cores

Nvidia Fermi
448 cores, SMT

Tilera TILE Gx
100 cores
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Prediction 3: Accelerators
Why?
 Special purpose enables better efficiency
 10x to 100x gain for data parallel problems
 Limited applicability, thus co-processor
 Can be discrete chip or integrated on die

Implications
 Multiple programming models
 Coarse-grain partitioning necessary
 Programs often become non-portable

Rack-mount server components
2 quad-core CPUs + 4 GPUs
200 Gflop/s + 4 Tflop/s

HPC cabinet
CPU blades + GPU blades
Custom interconnect

RoadRunner
6,480 CPUs + 12,960 Cells
3240 TriBlades
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Prediction 4: Memory Capacity Limited
Why?
 Good machine balance: 1 byte/flop
 Multicore CPUs have huge performance
 Limited power budget
 Need to limit memory size

Implications
 Saving memory complicates programs
 Trade-off: memory vs. operations
 Requires new algorithm optimization

BlueGene/L
65,536 dual-core CPUs
16 TB RAM, 360 Tflop/s
1 core: 128 MB for 2.8 Gflop/s
0.045 byte/flop

Nvidia Tesla M2050 (Fermi)
1 GPU, 448 cores
6 GB, 515 Gflop/s
1 core: 13 MB for 1.15 Gflop/s
0.011 byte/flop

Dell PowerEdge R910
2 x 8-core CPUs
256 GB,  145 Gflop/s
1 core: 16 GB for 9 Gflop/s
1.7 byte/flop
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HPC Software Development
Popular HPC programming languages
 1953: Fortran
 1973: C
 1985: C++
 1997: OpenMP
 2007: CUDA

Popular HPC libraries
 1979: BLAS
 1992: LAPACK
 1994: MPI
 1995: ScaLAPACK
 1995: PETSc
 1997: FFTW

Proposed and maturing (?)
 Chapel, X10, Fortress, UPC, GA, HTA, OpenCL, Brook, 

Sequoia, Charm++, CnC, STAPL, TBB, Cilk,…

Slow change in direction
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The Cost Of Portability and Maintainability
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Matrix-Matrix Multiplication
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6,500x

simple C code
4 lines

Best CPU code
100,000 lines, SSE, OpenMP

Best GPU code
10,000 lines CUDA

=15 years technology loss
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Summary
 Hardware vendors will somehow keep Moore’s law on track

 Software development changes very slowly

 Portable and maintainable code costs performance

Unoptimized program 
= 15 years technology loss


